Monotone convergence theorems for Henstock–Kurzweil integrable functions and applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

Convergence Theorems for Nonexpansive Mappings and Inverse-strongly Monotone Mappings

In this paper, we introduce a general iterative scheme for finding a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for an inverse-strongly monotone mapping.

متن کامل

Convergence Theorems for Set-valued Denjoy-pettis Integrable Mappings

In this paper, we introduce the Denjoy-Pettis integral of set-valued mappings and investigate some properties of the set-valued Denjoy-Pettis integral. Finally we obtain the Dominated Convergence Theorem and Monotone Convergence Theorem for set-valued DenjoyPettis integrable mappings.

متن کامل

A Canonical Decomposition for Quadratic Forms with Applications to Monotone Convergence Theorems

In this note, we wish to prove precise theorems for monotone convergence of quadratic forms on a complex Hilbert space, X. For convenience we only consider positive forms although semibounded forms can be treated. In order to describe the existing theorems and to establish some notation, we first review some of the main ideas in the theory [2, 41: a positive quadratic form is a sesquilinear for...

متن کامل

Exploiting Monotone Convergence Functions in Parallel Programs Exploiting Monotone Convergence Functions in Parallel Programs

Scientiic codes which use iterative methods are often diicult to parallelize well. Such codes usually contain while loops which iterate until they converge upon the solution. Problems arise since the number of iterations cannot be determined at compile time, and tests for termination usually require a global reduction and an associated barrier. We present a method which allows us avoid performi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2010.10.063